Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.272
1.
ACS Sens ; 9(4): 2110-2121, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38622791

In this study, we explore the full-spectrum capabilities of fiber-optic surface plasmon resonance (FO-SPR) for analyzing heterogeneous samples with increased comprehensiveness. Our approach involves refining a literature-derived FO-SPR model to more precisely reflect experimental data obtained using a back-reflecting sensor configuration. Key enhancements in our model include adjustments to the thickness and permittivity of the gold SPR-active layer on the FO-SPR sensor as well as improvements to the angular distribution of light within the system. We apply this optimized model to the investigation of the deposition process of a metal-organic framework (MOF), specifically ZIF-8, using FO-SPR. By closely examining the temporal variations in the FO-SPR signal during MOF layer formation, we simultaneously determine the evolving thickness and refractive index (RI) of the MOF layer, offering a dual-parameter analysis. Our results demonstrate that a full-spectrum analysis of the FO-SPR signal can extract critical information from samples exhibiting radial heterogeneity. This advancement significantly enhances the quantitative assessment of various phenomena that alter the refractive index in the sensor's domain, such as adsorption and binding processes. This work thus represents a significant step forward in the field of FO-SPR sensor technology, promising broad applications in areas requiring the precise detection and analysis of complex samples.


Metal-Organic Frameworks , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Metal-Organic Frameworks/chemistry , Gold/chemistry , Fiber Optic Technology/methods , Fiber Optic Technology/instrumentation
2.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38626737

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Alzheimer Disease , Amyloid beta-Peptides , Biosensing Techniques , Early Diagnosis , Fiber Optic Technology , Peptide Fragments , Spectrum Analysis , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/analysis , Humans , Fiber Optic Technology/methods , Peptide Fragments/analysis , Biosensing Techniques/methods , Spectrum Analysis/methods , Optical Fibers , Biomarkers/analysis , Refractometry , Equipment Design
3.
Sensors (Basel) ; 24(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38544254

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Biosensing Techniques , Neoplasms , Humans , Biomarkers, Tumor , Biosensing Techniques/methods , Fiber Optic Technology/methods , Optical Fibers , Proteins , Neoplasms/diagnosis , Hyaluronan Receptors
4.
Nanoscale ; 16(6): 3113-3120, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38258424

As a low-density lipoprotein, tributyrin plays an essential role in food safety and human health. In this study, a novel lipase-conjugated carbon nanotube (CNT) surface plasmon resonance (SPR) fiber-optic sensor is used to specifically detect tributyrin for the first time. In this work, CNTs can be used as an amplifying material to significantly increase the sensitivity of SPR sensors due to their high refractive index and large surface area. CNTs can also be used as an enzyme carrier to provide abundant carboxyl groups for the specific binding of lipases. Covering the surface of the sensor with CNTs can not only enhance the performance of the sensor, but also provide sufficient detection sites for subsequent biomass detection, reduce the functionalization steps, and simplify the sensor preparation process. The experimental results demonstrate that the refractive index sensitivity of the traditional multimode fiber (MMF)-single mode fiber (SMF)-MMF transmissive optical fiber sensor is 1705 nm RIU-1. After covering the sensor with CNTs, the sensitivity is 2077 nm RIU-1, and the sensitivity has been improved very well. In addition, there are abundant functional groups on CNTs, which can provide abundant binding sites. Conjugating lipase on carbon nanotubes helps to achieve linear detection in the range of 0.5 mM to 4 mM tributyrin, with a sensitivity of 4.45 nm mM-1 and a detection limit of 0.34 mM, which is below the 2.26 mM detection standard and meets food safety monitoring requirements. Compared with other sensors, the optical fiber biosensor proposed in this study expands the concentration detection range of tributyrin. Furthermore, the sensor also has good stability, anti-interference performance and specificity. Therefore, the sensor proposed in this paper has good application prospects in the fields of food safety and biomedicine.


Nanotubes, Carbon , Surface Plasmon Resonance , Triglycerides , Humans , Surface Plasmon Resonance/methods , Lipase , Fiber Optic Technology/methods
5.
Biosensors (Basel) ; 13(12)2023 Dec 14.
Article En | MEDLINE | ID: mdl-38131789

Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test results. To tackle this aspect, a portable fiber optic surface plasmon resonance (FO-SPR) device was developed for the real-time detection of infectious pathogens. The portable device innovatively integrated a compact FO-SPR sensing component, a signal acquisition and processing system, and an embedded power supply unit. A gold-plated fiber is used as the FO-SPR sensing probe. Compared with traditional SPR sensing systems, the device is smaller size, lighter weight, and higher convenience. To enhance the detection capacity of pathogens, a monolayer graphene was coated on the sensing region of the FO-SPR sensing probe. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to evaluate the performance of the portable device. The device can accurately detect the SARS-CoV-2 spike S1 protein in phosphate-buffered saline (PBS) and artificial saliva within just 20 min, and the device successfully detected cultured SARS-CoV-2 virus. Furthermore, the FO-SPR probe has long-term stability, remaining stable for up to 8 days. It could distinguish between the SARS-CoV-2 spike protein and the MERS-CoV spike protein. Hence, this FO-SPR device provides reliable, rapid, and portable access to test results. It provides a promising point-of-care testing (POCT) tool for on-site screening of infectious pathogens.


Biosensing Techniques , Graphite , Humans , Surface Plasmon Resonance/methods , Fiber Optic Technology/methods , Point-of-Care Testing , Biosensing Techniques/methods
6.
Anal Chim Acta ; 1283: 341960, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37977802

BACKGROUND: Highly sensitive and rapid detection of cell concentration and interfacial molecular events is of great value for biological, biomedical, and chemical research. Most traditional biosensors require large sample volumes and complicated functional modifications of the surface. It is of great significance to develop label-free biosensor platforms with minimal sample consumption for studying cell concentration changes and interfacial molecular events without labor-intensive procedures. RESULTS: Here, a fiber-optic biosensor based on intracavity evanescent field absorption sensing is designed for sensitive and label-free cell assays for the first time. The interaction between the cells and the evanescent field is enhanced by introducing microfluidic-integrated intracavity absorption in a fiber ring laser. This strategy extends the range of targeted analytes to include quantification of a large number of targets on a surface and improves the detection sensitivity of the fiber-optic biosensor. The level of sensing resolution could be improved from 10-4 RIU to 10-7 RIU using this strategy. The stem cells were studied over a wide concentration range (from 500 to 1.2 × 105 cells/ml) and were measured sequentially. By measuring the output power of the intracavity absorption sensing system, the cell concentration can be directly determined in a label-free manner. The results show that dozens of stem cells can be sensitively detected with a sample consumption of 72 µL. The response was fast (15 s) with a low temperature cross-sensitivity of 0.031 cells·ml-1/°C. SIGNIFICANCE: The proposed method suggests its capacity for true label-free and noninvasive cell assays with a low limit of detection and small sample consumption. This has the potential to be used as a universal tool for quantitative and qualitative characterization of various cells and other biochemical analytes.


Biosensing Techniques , Microfluidics , Biosensing Techniques/methods , Fiber Optic Technology/methods , Research Design , Lasers
7.
Sensors (Basel) ; 23(13)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37447798

The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.


Fiber Optic Technology , Optical Fibers , Fiber Optic Technology/methods
8.
Opt Lett ; 48(14): 3749-3752, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37450741

We investigate the impact of collisions with two-frequency photonic molecules aiming to observe internal dynamic behavior and challenge their strong robustness. Versatile interaction scenarios show intriguing state changes expressed through modifications of the resulting state such as temporal compression and unknown collision-induced spectral tunneling. These processes show potential for efficient coherent supercontinuum generation and all-optical manipulation.


Fiber Optic Technology , Photons , Fiber Optic Technology/methods
9.
IEEE Trans Nanobioscience ; 22(4): 978-988, 2023 10.
Article En | MEDLINE | ID: mdl-37216266

Food safety is a scientific discipline that requires sophisticated handling, production, and storage. Food is common for microbial development; it acts as a source for growth and contamination. The traditional procedures for food analysis are time-consuming and labor-intensive, but optical sensors overcome these constraints. Biosensors have replaced rigorous lab procedures like chromatography and immunoassays with more precise and quick sensing. It offers quick, nondestructive, and cost-effective food adulteration detection. Over the last few decades, the significant spike in interest in developing surface plasmon resonance (SPR) sensors for the detection and monitoring of pesticides, pathogens, allergens, and other toxic chemicals in foods. This review focuses on fiber-optic SPR (FO-SPR) biosensors for detecting various adulterants in food matrix while also discussing the future perspective and the key challenges encountered by SPR based sensors.


Biosensing Techniques , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Fiber Optic Technology/methods , Food Contamination/analysis
10.
Food Chem ; 422: 136189, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37116271

There is strong interest in non-destructive and rapid determination of food freshness in food research. In this study, mid-infrared (MIR) fiber-optic evanescent wave (FOEW) spectroscopy was applied to monitor shrimp freshness through the evaluation of protein, chitin, and calcite contents in conjunction with a Partial Least Squares Discriminant Analysis (PLS-DA) model. Shrimp shells were wiped with a micro fiber-optic probe to obtain a FOEW spectrum which quickly and nondestructively allowed evaluation of the shrimp freshness. Peaks for proteins, chitin, and calcite, which are closely related to shrimp freshness, were detected and quantified. Compared with the standard indicator for evaluating shrimp freshness (total volatile basic nitrogen), the PLS-DA model gave recognition rates for shrimp freshness using calibration and validation sets of the FOEW data of 87.27%, 90.28%, respectively. Our results show that FOEW spectroscopy is a feasible method for non-destructive and in-site detection of shrimp freshness.


Fiber Optic Technology , Seafood , Fiber Optic Technology/methods , Spectrophotometry, Infrared , Least-Squares Analysis , Calibration
11.
Odontology ; 111(4): 854-862, 2023 Oct.
Article En | MEDLINE | ID: mdl-36797498

Digital imaging fiber-optic transillumination (DIFOTI) devices have been used to detect caries, a technique without using X-rays. However, the effects of resin composites (RCs) shades on the images acquired with DIFOTI devices have not been investigated. Thus, this study aimed to elucidate the influence of RC shade on the images obtained with DIFOTI technique. Three shades (A1, A3, and Opaque) for each of four flowable RCs were filled on a cavity prepared in a left mandibular first premolar obtained from a donated body. Then, transmission images with a DIFOTI device (DIAGNOcam; KaVo, Biberach, Germany) were acquired, and the average lightness values of the images in the RC and enamel were used to calculate differences between those areas. To clarify the influence of the optical translucency and color on DIFOTI images, the color parameters (L*, a* and b*) of each RC were obtained with black and white backgrounds. The color differences between the backgrounds were calculated as transparency parameter (TP) values. The number of repetitions was set to 10. Differences in the lightness value of the shades varied in each RC. The difference in lightness was significantly associated with the TP value and color parameters of L* (p < 0.01), with negative (R = - 0.81) and positive (R = 0.84) correlations, respectively. In conclusion, DIFOTI images of RCs with high optical translucency resembled those of the natural tooth structure.


Dental Caries , Transillumination , Humans , Transillumination/methods , Composite Resins/chemistry , Fiber Optic Technology/methods , Dental Caries/diagnostic imaging , Dental Enamel , Color , Materials Testing
12.
ACS Sens ; 8(2): 811-821, 2023 02 24.
Article En | MEDLINE | ID: mdl-36734337

Throughout the past decades, fiber optic surface plasmon resonance (FO-SPR)-based biosensors have proven to be powerful tools for both the characterization of biomolecular interactions and target detection. However, as FO-SPR signals are generally related to the mass that binds to the sensor surface, multistep processes and external reagents are often required to obtain significant signals for low molecular weight targets. This increases the time, cost, and complexity of the respective bioassays and hinders continuous measurements. To overcome these requirements, in this work, cis-duplexed aptamers (DAs) were implemented on FO-SPR sensors, which underwent a conformational change upon target binding. This induced a spatial redistribution of gold nanoparticles (AuNPs) upon specific target binding and resulted in an amplified and concentration-dependent signal. Importantly, the AuNPs were covalently conjugated to the sensor, so the principle does not rely on multistep processes or external reagents. To implement this concept, first, the thickness of the gold fiber coating was adapted to match the resonance conditions of the surface plasmons present on the FO-SPR sensors with those on the AuNPs. As a result, the signal obtained due to the spatial redistribution of the AuNPs was amplified by a factor of 3 compared to the most commonly used thickness. Subsequently, the cis-DAs were successfully implemented on the FO-SPR sensors, and it was demonstrated that the DA-based FO-SPR sensors could specifically and quantitatively detect an ssDNA target with a detection limit of 230 nM. Furthermore, the redistribution of the AuNPs was proven to be reversible, which is an important prerequisite for continuous measurements. Altogether, the established DA-based FO-SPR bioassay holds much promise for the detection of low molecular weight targets in the future and opens up possibilities for FO-SPR-based continuous biosensing.


Biosensing Techniques , Metal Nanoparticles , Surface Plasmon Resonance/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Fiber Optic Technology/methods
13.
Sensors (Basel) ; 23(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36617150

In this paper, we present a novel technique for passively autoranging a photonic current transducer (PCT) that incorporates a current transformer (CT), piezoelectric transducer (PZT) and fiber Bragg grating (FBG). Due to the usage of single-mode fiber and FBG, multiple PCTs can be interconnected and distributed over a long distance, for example along a power network, greatly reducing the cost of sensor deployment and offering other unique advantages. The autoranging technique relies on the usage of multiple, serially connected CT burden resistors and associated static MOSFET switches to realize instantaneous shortening of the resistors in response to increasing measured current. This functionality is realized passively, utilizing a modular, µW-power comparator circuit that powers itself from the electrical energy supplied by the CT within a small fraction of the 50/60 Hz cycle. The resultant instantaneous changes in sensor gain will be ultimately detected by the central FBG interrogator through real-time analysis of the optical signals and will be used to apply appropriate gain scaling for each sensor. The technique will facilitate the usage of a single PCT to cover an extended dynamic range of the measurement that is required to realize a combined metering- and protection-class current sensor. This paper is limited to the description of the design process, construction, and testing of a prototype passive autoranging circuitry for integration with the PCT. The two-stage circuitry that is based on two burden resistors, 1 Ω and 10 Ω, is used to prove the concept and demonstrate the practically achievable circuit characteristics. It is shown that the circuit correctly reacts to input current threshold breaches of approximately 2 A and 20 A within a 3 ms reaction time. The circuit produces distinct voltage dips across burden resistors that will be used for signal scaling by the FBG interrogator.


Fiber Optic Technology , Optical Fibers , Fiber Optic Technology/methods , Transducers
14.
Sensors (Basel) ; 23(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36679440

The fiber-optic surface plasmon resonance sensor has very promising applications in environmental monitoring, biochemical sensing, and medical diagnosis, due to the superiority of high sensitivity and novel label-free microstructure. However, the influence of ambient temperature is inevitable in practical sensing applications, and even the higher the sensitivity, the greater the influence. Therefore, how to eliminate temperature interference in the sensing process has become one of the hot issues of this research field in recent years, and some accomplishments have been achieved. This paper mainly reviews the research results on temperature self-compensating fiber-optic surface plasmon sensors. Firstly, it introduces the mechanism of a temperature self-compensating fiber-optic surface plasmon resonance sensor. Then, the latest development of temperature self-compensated sensor is reviewed from the perspective of various fiber-optic sensing structures. Finally, this paper discusses the most recent applications and development prospects of temperature self-compensated fiber-optic surface plasmon resonance sensors.


Optical Fibers , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Temperature , Fiber Optic Technology/methods
15.
Sensors (Basel) ; 22(23)2022 Nov 23.
Article En | MEDLINE | ID: mdl-36501796

Here, we experimentally demonstrate a wedged fiber optic surface plasmon resonance (SPR) sensor enabling high-sensitivity temperature detection. The sensing probe has a geometry with two asymmetrical bevels, with one inclined surface coated with an optically thin film supporting propagating plasmons and the other coated with a reflecting metal film. The angle of incident light can be readily tuned through modifying the beveled angles of the fiber tip, which has a remarkable impact on the refractive index sensitivity of SPR sensors. As a result, we measure a high refractive index sensitivity as large as 8161 nm/RIU in a wide refractive index range of 1.333-1.404 for the optimized sensor. Furthermore, we carry out a temperature-sensitivity measurement by packaging the SPR probe into a capillary filled with n-butanol. This showed a temperature sensitivity reaching up to -3.35 nm/°C in a wide temperature range of 20 °C-100 °C. These experimental results are well in agreement with those obtained from simulations, thus suggesting that our work may be of significance in designing reflective fiber optic SPR sensing probes with modified geometries.


Refractometry , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Refractometry/methods , Equipment Design , Fiber Optic Technology/methods , Optical Fibers
16.
Sensors (Basel) ; 22(22)2022 Nov 13.
Article En | MEDLINE | ID: mdl-36433369

In the present work, a complete non-invasive scientific investigation of six Utagawa Kunisada's woodblock prints (nishiki-e) belonging to the Oriental Art Museum "E. Chiossone" (Genoa, Italy), was performed in situ. The campaign started with high resolution multiband imaging (visible, multiband fluorescence, near infrared) followed by reflectance transformation imaging (RTI) to characterize and highlight the peculiar printing techniques and the condition of the support. Then fiber optics reflectance spectroscopy (FORS), spectrofluorimetry, Raman and reflectance Fourier-transform infrared (FTIR) spectroscopies were successfully applied in synergy for the investigation of the printing materials (pigments, binders, support). The results obtained represent a set of very important information for these never-before-studied works of art, useful to the different professionals involved: historians, conservators and curators. The materials identified were completely in agreement with those traditionally used in the Edo period in the 19th century, while the computational imaging technique RTI gave an additional amount of information in terms of surface characterization that could not be overlooked when studying these works of art. RTI data were further processed to enhance the texture visualization.


Fiber Optic Technology , Museums , Japan , Spectroscopy, Fourier Transform Infrared , Fiber Optic Technology/methods , Italy
17.
Opt Express ; 30(15): 26090-26101, 2022 Jul 18.
Article En | MEDLINE | ID: mdl-36236806

We demonstrate a miniature fiber-optic two two-photon endomicroscopy with microsphere-spliced double-cladding antiresonant fiber for resolution enhancement. An easy-to-operate process for fixing microsphere permanently in an antiresonant fiber core, by arc discharge, is proposed. The flexible fiber-optic probe is integrated with a parameter of 5.8 mm × 49.1 mm (outer diameter × rigid length); the field of view is 210 µm, the resolution is 1.3 µm, and the frame rate is 0.7 fps. The imaging ability is verified using ex-vivo mouse kidney, heart, stomach, tail tendon, and in-vivo brain neural imaging.


Fiber Optic Technology , Photons , Animals , Fiber Optic Technology/methods , Mice , Microspheres
18.
Opt Express ; 30(19): 33449-33464, 2022 Sep 12.
Article En | MEDLINE | ID: mdl-36242381

An optical fiber with both temperature and strain fiber Bragg grating sensors were embedded into an aluminum cast structure during the casting process. Temperature and strain calibrations were carried out respectively for the metal-embedded sensors. Temperature and external strain decoupling was further demonstrated in a temperature range from 25 to 80 °C and an external strain range from 0 to ∼110 µÉ›. With the interpolated temperature measured by two temperature sensors at different positions, the external strain could be decoupled from temperature and thermal strain at the strain sensor. The temperature and external strain values obtained from our embedded optical fiber sensors agreed well with reference values, revealing the good performance of the metal-embedded optical fiber sensors. The difference between the measured values and the reference values are within ±5 µÉ› for external strain and ±1 °C for temperature. With only a single fiber, the in-situ temperature and external strain information in the aluminum structure can be monitored in real time, representing an important step towards fiber-optic smart casts. Our investigation demonstrates that embedded optical fiber sensors can be a promising method for structural health monitoring of metallic structures.


Aluminum , Optical Fibers , Fiber Optic Technology/methods , Monitoring, Physiologic , Temperature
19.
Appl Opt ; 61(14): 3980-3986, 2022 May 10.
Article En | MEDLINE | ID: mdl-36256069

An in situ robust ground settlement (IR-GS) sensor was designed to meet the requirements for oil-tank health monitoring by combining a low-coherent fiber-optic interferometry with a fine mechanical spline shaft. A floating mirror was mounted on the shaft and moved up and down along with the liquid surface. The liquid-contained chambers were hydraulically connected at the bottom by using a liquid-filled tube. The liquid level inside each chamber was initially at equal level. One of the chambers was fixed on a steady ground point, which was chosen in a surveying point of view and served as a reference. The others were distributed around an oil tank and separated the tank's perimeter into eight equal spans. Thereby, the health states of the oil tank were able to be evaluated based on these sensing results. Interrogation of the sensor was employed via a low-coherent fiber-optic Michelson interferometer. One path of the interferometer was composed by the floating mirror, whereupon a light was reflected. The other path was projected to a mirror that was fixed on a stepping motor. Therefore, the corresponding liquid level could be optically surveyed. Differential settlements between each chamber and the reference served as a measure of how much the liquid level was changed from its initials. Experimental tests demonstrated that this IR-GS design, with the optimized shape and weights of the spline shaft, could overcome the error caused by dust, hysteresis, temperature, etc. and meet the practical requirement in the accuracy of ±0.5mm. A practical application was carried out, and its long-term stability has been proved.


Interferometry , Optical Fibers , Equipment Design , Interferometry/methods , Fiber Optic Technology/methods , Dust
20.
Appl Opt ; 61(28): 8522-8526, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-36256169

Optical fiber technology combined with surface plasmon resonance enables rapid, precise detection of chemical, biochemical, and biological parameters. Many hybrid optical fiber structures have been suggested in recent decades to increase the sensitivity of optical fiber biosensors. In this work, an optical fiber tip structure is fabricated on single-mode fiber (SMF) by etching in a hydrofluoric acid (40%) solution at room temperature. The proposed method of tip formation utilizing wet etching is efficient for fabricating the highly sensitive fiber structures that are required for the development of optical fiber-based biosensors. The diameter measurement of fabricated fiber tip formation is done using a compound microscope.


Fiber Optic Technology , Hydrofluoric Acid , Fiber Optic Technology/methods , Hydrofluoric Acid/chemistry , Equipment Design , Optical Fibers , Surface Plasmon Resonance
...